

Solintel_

pprox THERMOWATT

Sunamp Heat Batteries"

HOCHSCHULE

LUZERN

ELECTRICITY

Cooling Innovation.

WP5: Self-Correcting Intelligent **Building Energy Management** System (SCI-BEMS)

HEATHCO

Dimosthenis Tsagkrasoulis (WVT)

Heat4COOL project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 723925

Heat4Cool Final review meeting - 11.05.2021

NATURAL GAS

Work Package Objectives

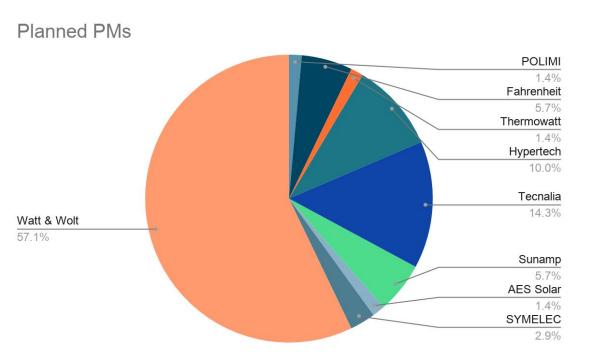
- Design the control system architecture
- Design and develop user profiling models for comfort and health preservation
- Design, configure and develop the SCI-BEMS
- Test and validate the SCI-BEMS

Work Package Tasks and Deliverables

- T5.1: User requirements, specifications and architecture design of the SCI-BEMS M4-M7 Completed
 - > D5.1 M7 Report Submitted
- T5.2: SCI-BEMS communication architecture & middleware design *M8-M18 Completed*
 - D5.2 M18 Demonstrator Submitted
- T5.3: Definition of optimal human-centric control strategies & SCI-BEMS development - M8-M18 (M20) Completed
 - > D5.3 M18 (M20) Report Submitted

Work Package Tasks and Deliverables

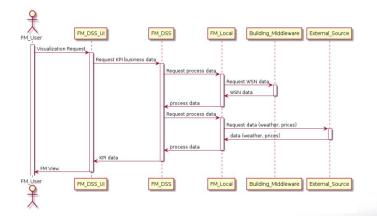
- T5.4 System integration and Testing of the SCI-BEMS -M11-M36 (M54) Completed
 - D5.4 M20 (M25) Demonstrator Submitted
 - D5.5 M29 (M35) Demonstrator Submitted
 - D5.6 M36 (M54) Demonstrator Submitted
- Milestone MS6: First Prototype of the SCI-BEMS M20 (M25)



Planned use of PMs

WP5			
POLIMI	1		
Fahrenheit	4		
Thermowatt	1		
Hypertech	7		
Tecnalia	10		
Sunamp	4		
AES Solar	1		
SYMELEC	2		
Watt & Wolt	40		
Total	70		

Associated Key Exploitable Result (KER): Self Correcting Intelligent - Building Energy Management System (SCI-BEMS)


- Task 5.1 User requirements, specifications and architecture design of the SCI-BEMS (M4-M7)
 - Lead Partner: HYP, Participants: FAR, THW, TEC, SUN, SYM
 - > Objectives:
 - Definition of user requirements for the SCI-BEMS
 - Definition of functionalities for the sub-systems
 - Extraction of functional and non-functional specifications
 - Definition of the end-to-end system architecture

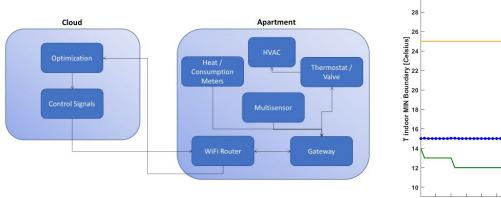
- Task 5.1 User requirements, specifications and architecture design of the SCI-BEMS (M4-M7)
 - Definition of business scenarios and identification of stakeholders
 - Circulation of questionnaires for gathering user requirements
 - Extraction of functional and non-functional requirements
 - System architecture for SCI-BEMS and its components
 - Definition of SCI-BEMS data model

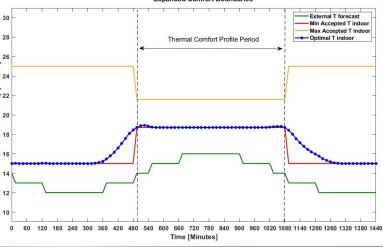
Require extensive input and knowledge Complicated and time consuming Tools do not provide alternative solutions Are designed for well-trained users Limited functionality Outdated/needs constant upgrades Other

Heat4COOL project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 723925

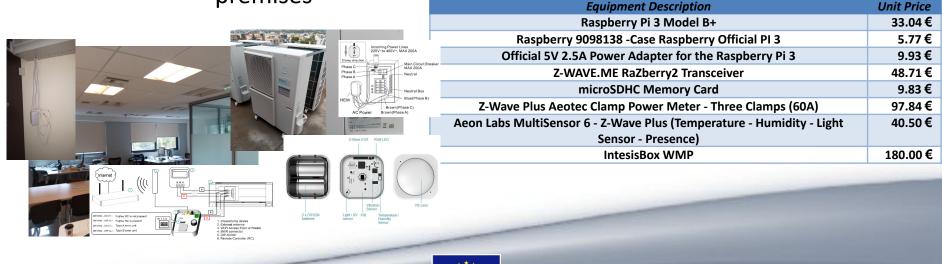
- Task 5.2 SCI-BEMS communication architecture & middleware design (M8-M18)
 - Lead Partner: TEC, Participants: FAR, HYP, SUN, AES
 - > Objectives:
 - Evaluate and select the communication architecture for wireless sensor networks and buses, protocols and systems for building automation
 - Design the middleware layer that integrates wireless communications, bus communications and building automation systems enabling a real-time response by the SCI-BEMS

- Task 5.2 SCI-BEMS communication architecture & middleware design (M8-M18)
 - Evaluation and selection of hardware components
 - Implementation of communication software based on Openhab and ZWave protocols

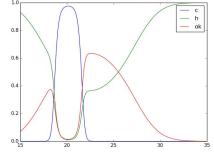

- Task 5.3 Definition of optimal human-centric control strategies & SCI-BEMS development (M8-M23)
 - ➤ Lead Partner: HYP, Participants: POL, FAR, TEC, SUN
 - > Objectives:
 - Design the behavioural profiling framework to enable the preservation of comfort and health aspects
 - Exploration and definition of control strategies that balance user comfort, energy efficiency and services to the grid
 - Establishment of optimal control for Heat4Cool devices given detailed models of the utilized devices

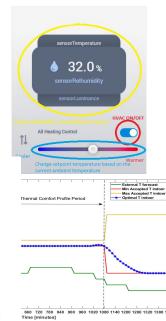


- Task 5.3 Definition of optimal human-centric control strategies & SCI-BEMS development (M8-M23)
 - Definition of comfort and energy optimization profiling framework. Development of relevant subcomponents
 - Exploration of control strategies for Heat4Cool devices
 - Automated identification, refinement and forecasting of personal comfort preferences.
 Expanded Comfort Boundaries


- Task 5.4 System integration and Testing of the SCI-BEMS (M11-M54)
 - Lead Partner: HYP, Participants: FAR, TEC, SUN, SYM
 - > Objectives:
 - Overall integration of software components and subsystems
 - Interfacing with the energy sub-systems
 - Validation of the system at the KUBIK building
 - Deployment deployment strategies and plans for the pilot buildings

- Task 5.4 System integration and Testing of the SCI-BEMS (M11-M54)
 - ► Work Done prior to M37:
 - System Integration and communication with the middleware
 - Deployment and user manuals in conjunction with WP6
 - Evaluation of first SCI-BEMS prototype at Hypertech's premises
 Equipment Description





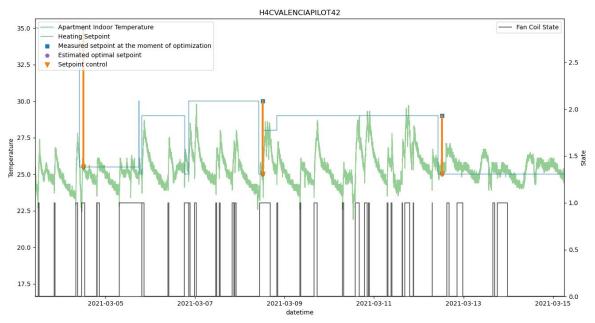
- Task 5.4 System integration and Testing of the SCI-BEMS (M11-M54)
 - ➤ Work Done prior to M37:
 - UI development for commissioning and for the end user with remote monitoring and control capabilities
 - Web Services available through REST APIs
 - Comfort Profile
 - Thermal Model Parameter Estimation
 - Thermal Optimization
 - Data Retrieval

	SmartBox Settings				
Step 1 Building	Step 2 Network	Step 3 Save			
Select Country		×	Discovered Devices	Z-Wave Node D12	Installing
Select Zone Type		*	Coren	2-Wave Node 005: ZMNHVU Hush Dimmer 0-100	Rancy
Select Zone(s) Na	ame	÷	Comm	Z-Wave Node D05	Indializing
			10mm	Z-Wave Node 007	Indiations.
		Back Next			

- Task 5.4 System integration and Testing of the SCI-BEMS (M11-M54)
 - ➤ Work Done prior to M37:
 - Evaluation of second SCI-BEMS prototype at Kubik

- Task 5.4 System integration and Testing of the SCI-BEMS (M11-M54)
 - ➤ Work Done during M37-M54:
 - Commissioning, operation and evaluation in Valencia pilot.
 - Control Strategy:
 - Heating and cooling setpoints were identified in a weekly basis and were sent remotely to the fan coil thermostats. The occupants reserved full control of the status of the fan coil, and could override the setpoint selections manually.

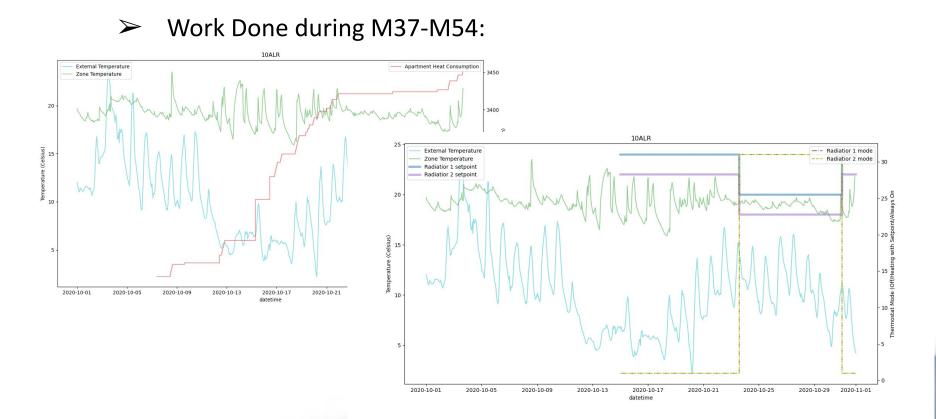
- Task 5.4 System integration and Testing of the SCI-BEMS (M11-M54)
 - ➤ Work Done during M37-M54:
 - Evaluation results from Valencia between January and March 2021.
 - The automation service was activated between 19-31 of January and 01-31 of March.
 - The baseline period was the month of February
 - Average Daily Heat Production with SCI-BEMS:
 - inactive: 278838.71 Wh
 - active: 232857.143 Wh


- Task 5.4 System integration and Testing of the SCI-BEMS (M11-M54)
 - ➤ Work Done during M37-M54:
 - Relative reduction in heat produced by the heat pumps: 16,49%
 - Two-sided t-test with the null hypothesis that the expected (average) daily heat production is the same with or without SCI-BEMS was performed:
 - p-value before controlling for the effect of external temperature: 0.0346
 - p-value after controlling for the effect of external temperature: 0.00017

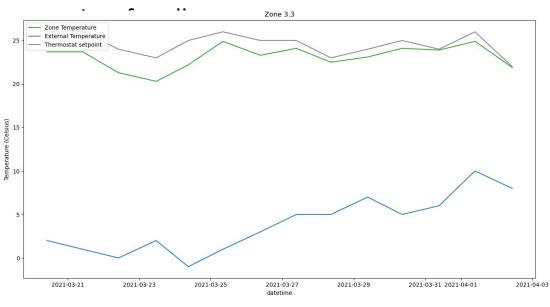
- Task 5.4 System integration and Testing of the SCI-BEMS (M11-M54)
 - ➤ Work Done during M37-M54:
 - SCI-BEMS automation service Apartment 4-2, March 2021

- Task 5.4 System integration and Testing of the SCI-BEMS (M11-M54)
 - ➤ Work Done during M37-M54:
 - Commissioning, operation and evaluation in Chorzow pilot.
 - Control Strategy:
 - Thermal model identification followed by numerical optimization to establish the ideal setpoint for the Fibaro thermostatic heads.

- Task 5.4 System integration and Testing of the SCI-BEMS (M11-M54)
 - ➤ Work Done during M37-M54:
 - Evaluation results from zone: living room of apartment 10A
 - Baseline period: 16-23/10/2020
 - Remote setpoint control between 24-30/10/2020.
 - Thermal model and ideal setpoint identified during baseline period.
 - Thermostatic valve setpoints set by the users could not be attained by the system
 - During baseline, temperature raises and dips significantly and multiple times, which suggests inefficient use of the system


- Task 5.4 System integration and Testing of the SCI-BEMS (M11-M54)
 - ➤ Work Done during M37-M54:
 - Setpoints for the two valves in the zone were set to 20 and 18 degrees Celsius by the SCI-BEMS for the last week of October.
 - The indoor temperature evolution becomes significantly smoother during that period.
 - Heat consumption during the baseline period was 140.555 kWh
 - Heat consumption during the control period was 17.222
 kWh, a relative reduction of approximately 87.7%.

 Task 5.4 System integration and Testing of the SCI-BEMS (M11-M54)



- Task 5.4 System integration and Testing of the SCI-BEMS (M11-M54)
 - ➤ Work Done during M37-M54:
 - Partial commissioning in Sofia Monitoring of indoor/outdoor temperatures and thermostat heating

Issues During Demonstration and Lessons Learnt

- In Valencia
 - one gateway was installed per floor, serving three apartments.
 - Initially there were doubts about the communication.
 Tests performed verified that the infrastructure was stable and suitable.
 - multisensors could not be installed in the apartments.
 - Due to lack of occupancy information, it was decided that the automated setpoint control will be performed in a weekly basis.
- In Sofia the main issue was the lack of any demonstration time.

Issues During Demonstration and Lessons Learnt

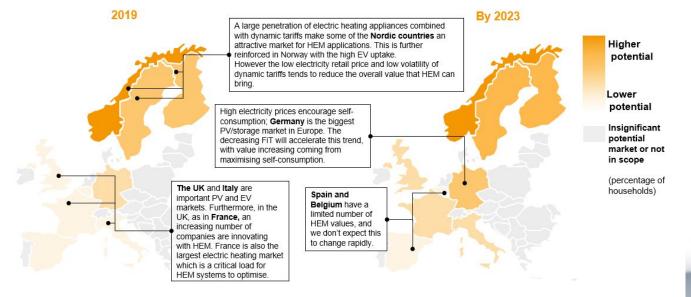
- In Chorzow:
 - Operational time of multisensors and thermostatic valves on a single charge was significantly shorter.
 - To partially address the issue, devices were parameterized to send data less frequently. It will now be advised to opt for plugged installations.
 - One thermostatic value in each apartment was set to Always On position, to avoid a boiler failure mode due to different boiler/value setpoint control.
 - Certain thermostatic valves are showcasing abnormal behaviour (limited manual control or limited data communication) without clear causes. Both cases are still being explored.

Business Opportunities

- The SCI-BEMS, as a Key Exploitable Result concentrates on the needs of:
 - > Energy service companies (ESCO) or aggregators
 - Facility Managers or dwelling occupants/end users
- The goal of the KER is to provide:
 - A lightweight and cost-effective system
 - An energy efficiency module that enables optimal handling of HVAC operation
 - A cost efficiency framework, which incorporates retail pricing information
 - A comfort preserving framework, which integrates building occupants comfort/discomfort boundaries

Business Opportunities

- To achieve this goal, the SCI-BEMS was designed and developed according to the following principles:
 - Use as basis open API communication standards and automation software
 - Allow for flexible realization and customization of the system functionalities according to the infrastructure available
 - Utilize off-the-self monitoring and control devices that are affordable and widely available
 - Employ custom developed cloud services for data analysis and remote energy management.


Business Opportunities

- By 2023, the Home Energy Management market is expected to reach
 2.3 million units installed.
- The highest potential for growth has been located in the Nordic countries and in Germany, followed closely by France, UK and Italy.

The European HEM market

The Nordics and Germany are likely to be the most dynamic markets for HEM

CONNECTED HOME SERVICE

© Delta Energy & Environment Ltd 2019

8

Heat4COOL project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 723925

DELTA-EE

Potential Barriers

- Investment, installation, operational and maintenance expenses
 - The cost of investment must be justified by the appropriate revenue streams for all stakeholders.
- Lack of interoperable smart appliances on the market
 - Complexity can become high if communication and control is not standardized between subsystems involved.
- Increased threat to the privacy of the consumers
 - Any data connecting back to the users must be handled with strict care during the lifecycle of the analysis.
- Lack of understanding and/or interest of smart home technical aspects by end users
 - A product can only be successful if it captures the interest of the end users.

- SCI-BEMS reaches TRL 6 upon completion of the Heat4Cool project.
- ✤ 5-year financial plan:
 - The first 2 to 3 years are required for further research and development to create a market-ready product (TRL 9)
 - > 3 years of commercial exploitation following that period.

Technical and economic viability

- The revenue channel consists of annual license fees paid either directly by the consumer or indirectly by the ESCo/Aggregator The cost per individual dwelling will be 50 Euro. Furthermore an installation fee of 100 Euros will be charged.
- The target number of customers for the first year upon market entry is set to 500. In subsequent years, a 30% increase in this number is anticipated annually. With these assumptions at hand, the break even point is reached at the end of the fifth year.

	Year					
	2021	2022	2023	2024	2025	
Cost (€)	121.000	100.000	44.500	44.500	44.500	
Revenue (€)	0	0	75.000	122.500	184.250	
Yearly Balance (€)	-121.000	-221.000	-190.500	-112.500	27.250	

Thank you

Dimosthenis Tsagkrasoulis (WVT) d.tsagkrasoulis@watt-volt.gr

Heat4Cool Final review meeting - 11.05.2021

Heat4COOL project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 723925